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Abstract. A non-linear model of solid-state amorphization (SSA) is proposed which takes into
account the interaction of the structural elements of the amorphous phase via a stress field.
For the experimental parameters which correspond to semiconductors undergoing SSA by high-
pressure phase retention, we obtain the solution in the form of a self-sustaining wave with a
constant velocityv. This solution exists in the regionv < vc, where the critical velocityvc is
controlled by the thermal and concentration diffusivitiesDT andDN . A simple scaling relation
is proposed forvc: vc(DN ,DT ) ∼ DT /(DN)0.5. It is found that the characteristic correlation
length of the amorphous phase formed by SSA strongly depends on the interplay between the
parametersv, DN andDT .

1. Introduction

The field of non-equilibrium phase transitions in non-crystalline materials continues to attract
much attention [1–4]. A metastable amorphous phase can, when heated, begin to crystallize
and the latent heat thus released can accelerate the reaction, leading to the phenomenon
of self-sustained explosive crystallization [3, 4]. This non-equilibrium problem has been
described adequately only on a phenomenological level and a number of unsolved problems
still remain. First of all, there is a serious discrepancy between the observed growth rates for
such non-equilibrium processes and those obtained by extrapolating from the equilibrium
growth rates to the relevant temperatures of the non-equilibrium process. The enhancement
of the concentration diffusivity,DN , can reach 104–105 [5–7], suggesting that some extra
physical mechanism may drive the non-equilibrium phase transition. Second, using the
standard phonon thermal conductivity, it is easy to show that the heat disappears from the
zone of reaction too rapidly to sustain a non-equilibrium regime [7, 8]. Third, in order to
obtain agreement with the experimental data one must multiply the thermal diffusivityDT

by a factor of 10−5–10−6 [7].
However, although explosive crystallization is a well known example of a non-

equilibrium phase transition, it is not the only one. Another example is solid-state
amorphization (SSA) and this is the subject of this paper. Generally, SSA occurs when
a highly excited metastable solid is allowed to relax. Clear evidence for SSA is found in
high-pressure phase transitions [9, 10]. In contrast with the case of explosive crystallization
rather little theoretical analysis of SSA has been done thus far. The aim of the present work
is therefore to construct a model of SSA which is based on a physical approach previously
suggested [6, 7] for modelling explosive crystallization, and therefore to describe SSA
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as a diffusion-controlled process, with the aim of explaining the observed thermal and
concentration diffusivities. (An early version of the model was reported in [10].)

The paper is organized as follows: in section 2 we discuss the background physics to
the model which is introduced in section 3. The results are presented in section 4.

2. Model background

We first review the current experimental situation concerning SSA. Methods which have
been used to prepare amorphous alloys by SSA include solid-state reactions [11, 12],
mechanical alloying by continuous milling of a two-component mixture [13, 14], ion
implantation or radiation-induced disordering [15], hydrogen-induced vitrification [16] and
high-pressure techniques [17]. A common feature of these SSA processes appears to be
that relaxation of stress can aid the formation of the amorphous phase. In the case of
ion implantation, Volkert [15] has shown that ion bombardment in silicon at first leads to
a steadily increasing in-plane stress, and that at some critical dose of radiation the stress
reaches a maximum. This point coincides with the formation of the amorphous phase and
further growth of the amorphous layer is accompanied by a subsequent decrease in the
amplitude of the stress field [15]. Similar stress relaxation has been proposed as a factor in
milling, grinding and solid-state reactions [9, 10].

In high-pressure techniques, a high-pressure phase (HPP) of a solid is initially formed
and then cooled to liquid nitrogen temperature and the pressure is released. At ambient
pressure a metastable HPP is obtained. If this is heated, when some temperatureTa
(the temperature of amorphization) is reached the HPP becomes unstable and the nearest-
neighbour order changes to that appropriate for the low-pressure phase, but long-range order
is simultaneously lost and an amorphous solid with a correlation lengthLc ∼ 10–20Å is
formed [9, 17–19].

Our model rests on the assumption [10] that an amorphous network can be represented
as a superstructure of certain structural elements which are absent in the crystalline state.
These elements, which we will call ‘structure-forming defects’ (SFD), act as soft regions
in the rigid covalent network which allow the bond angles and bond distances adjacent to
the SFD to vary, and are thus responsible for the loss of long-range order in the amorphous
state [20, 21]. The detailed microscopic structure of the SFD may be different for different
amorphous solids, depending on their chemical composition. We assume only that they are
characterized by energies of creation and annihilation and that they interact via a stress field,
as discussed below. We neglect all orientation effects and average over nearest neighbours.

If the concentration of SFD isN , the correlation lengthLc is

Lc ≈ N−1/3. (1)

(The case of the perfect crystal corresponds toN = 0.) Additional arguments in favour of
this model may be deduced from experimental data on the effect of doping of amorphous
solids obtained by solid-state amorphization [18, 19]. For the case of amorphous gallium
antimonide doped with copper, a-GaSb:Cu [18], and germanium a-GaSb:Ge [19], it was
found thatLc decreases with the impurity concentrationx up to several molecular per cent
(Lc was calculated from x-ray scattering data). It may be supposed that the doping produces
additional defect states leading to additional disorder, so in the doped caseL−3

c ∼ N + γ x,
where the coefficientγ takes into account the number of impurity atoms involved in the
generation of these SFD. Experimental data from [18, 19] are replotted in figure 1 in terms
of coordinatesL−3

c = f (x), and it can be seen that they correlate well with the suggested
linear relation.
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Figure 1. The concentration dependence ofL−3
c with doping for a-GaSb samples obtained by

solid-state amorphization under high pressure.L0 corresponds toLc(x = 0) ∼ 20 Å [13, 14].

We assume that the SFD are characterized by an energy of creationU , an energy of
annihilation1, and a characteristic radiusr0. The key idea is that the SFD interact via a
stress field, and that the presence of stress reduces the activation energy for SFD creation.
(This assumption is typically applied to standard defects in solids [22].) Ifϕ(r − ri) is the
potential energy associated with the stress field produced by theith SFD, at positionri then
in the mean-field approximation, the activation energy can be written as

U = 〈U(r)〉 = U0−
〈∑

i

ϕ(r − ri)
〉
≈ U0− n0ϕ(r̄) (2)

where U0 is the self-energy of the SFD,n0 is the number of nearest neighbours, and
r̄ = N−1/3 is the average distance between SFD (which we will henceforth identify with
the correlation lengthLc). We now assume that the excited state has an energy given by
the difference between the thermodynamic potential of the metastable HPP and that of the
low-pressure crystalline phase. If no SFD are formed, the excited state will decay into a
crystalline state and an excess of energy will be dissipated in phonon modes. If SFD are
formed, they can serve as traps for energy from the excited solid, so for their internal energy
we can write [10]

E = 〈UN〉 ≈ U(N)N (3)

whereU(N) is given by equation (2) when the substitutionr̄ = N−1/3 is made. When a
stationary concentration of SFD is reached, the valueE(N) will describe the excess energy
of the amorphous solid with respect to the crystalline solid, i.e. give an estimate of the heat
of crystallizationQcr . In the ideal case one might imagine all of the energy of the excited
state ending up being stored in SFD, but since the formation of SFD atTa is a dynamical
process, some part may cause phonon excitation. Thus some heat, which is less thanQcr ,
may be released nearTa. Note that the current model makes no assumptions about the
diffusivitiesDN andDT , so we will keep them as free parameters and analyse the effect of
the diffusion mechanism on the solid-state amorphization process.

3. Formalism

Following the discussion in section 2 we now write down a coupled pair of partial differential
equations which will describe the model via the concentration and temperature fields,N(r, t)

and T (r, t), and which include terms corresponding to diffusion, and also creation and
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annihilation of SFD. Thus we will need to solve

∂N

∂t
= ω0e−U/kBT −Nν1e−1/kBT +DN

∂2N

∂r2
(4)

∂T

∂t
= DT

∂2T

∂r2
− 1

cρ

∂E

∂t
(5)

where the parameterω0 ≈ a−3/τ0, ν1 is the characteristic phonon frequency (τ0 ≈ 1/ν1 ≈
10−13 s), a is the lattice parameter,c is the specific heat capacity andρ is the density. The
first term on the R.H.S. of equation (4) describes the creation of SFD. The second term on
the R.H.S. of equation (4) describes the annihilation of SFD, and we will take for simplicity
1 ≈ Ec ≈ constant, whereEc is the activation energy of crystallization.

In order to evaluate equations (4) and (5), it is necessary to propose a functionϕ(r) in
equation (2). Existing theories give an asymptotic formϕ(r) ∼ 1/rα for r → ∞, where
α = 3 or 6 [23]. There is no information about the asymptote in the other limitr → 0.
The effect of different possible asymptotic forms atr → 0 was considered in [10] and it
was found that SSA may occur for almost all functional forms ofϕ(r) at small distances.
In the present work we will consider a model form forϕ(r):

ϕ(r) = ϕ0 χ(r/r0)

χ(x) = 2x3/(1+ x6)
(6)

whereϕ0 is the amplitude of interaction between the SFD andr0 is their radius. Formulae
(6) give ϕ(r) ≈ r−3 at r → ∞ and ϕ(r) ≈ r3 for r → 0, so the stresses relax when
N increases, i.e. when a ‘more amorphous’ phase is reached. This model behaviour is in
agreement with the experimental results of Volkert [15], who showed that the relaxation of
a stress field in the sample corresponds to the formation of an amorphous phase.

Equations (4) and (5) have either one (N1) or three stationary solutions (N1 < N2 < N3)
and in both casesN1 is a stable solution, and in the latter caseN2 is unstable while
N3 is stable. The maximum stable solution is associated with the amorphous phase with
correlation lengthLc = N

−1/3
1 or Lc = N

−1/3
3 . In the case of one solution, the excited

state always transforms into the amorphous state; for three solutions, in order to reach the
amorphous state the initial concentration of SFDN(t = 0) should exceed a critical value
N2, otherwise a crystalline state will be formed. We note that in non-linear dynamical
processes, it is also possible that a transition wave between the stable pointsN1 andN3

may occur, so the amorphous state can be reached by a dynamical mechanism [24]. One
of the aims of the present work is to find such a solution (in contrast to [10] where only
static cases were analysed in detail).

Equations (4) and (5), together with (2) and (3), are strongly non-linear and it is difficult
to solve them by analytical or numerical methods. We make the simplifying assumptions
that the diffusivitiesDN andDT are constant. We expect that the qualitative results of the
computation will not depend much on this assumption. Further calculations (see the next
section) will show that the concentration profile is much sharper than the thermal one, so
there is probably no sense in taking into account the exact temperature dependence ofDN .
As forDT , any temperature dependence will be no more than a power series inT , which is
therefore weaker than the exponential terms in equations (4) and (5), so settingDT constant
is also reasonable.

In this paper, we will restrict ourselves to the case of a one-dimensional solution for
a self-sustaining phase transition wave. For the new variableξ = x − vt , wherev is the
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velocity of the phase transformation wave, we can write

−vdy

dξ
= DN

d2y

dξ2
− y

τ0
e−1/θ + b

τ0
e−U(y)/θ (7)

−vdθ

dξ
= DT

d2θ

dξ2
+ vkB

cρa3b

d

dξ
(yU(y)) (8)

U(y) = 1(1+ δ − sχ(y−1/3)) (9)

where y = Nr3
0, b = r3

0/a
3, θ = kBT , δ = (U0 − 1)/1, s = ϕ0no/1, and kB is the

Boltzmann constant. In accordance with reference [10], the following experimental values
were chosen:a = 3 Å, b = 15.7, T0 = 365 K, Qcr/cρ = 94 K, 1 = 0.5 eV and
kB/cρa

3b = 0.44, representing the case of a typical semiconductor which undergoes solid-
state amorphization via high-pressure phase retention. The values ofδ ands are not known
and are therefore kept as free parameters.

Equations (7) and (8) were solved numerically by means of an iterative method. Initially,
the exact solution of equation (7) was replaced by some reasonable profileN(ξ), andT (ξ)
was calculated exactly using equation (8). TheT (ξ) value thus obtained was put into
equation (7) to calculateN(ξ), etc. The iteration process was continued until the difference
between subsequent profilesN(ξ) became less than 10−4–10−5, which typically happened
after 40–50 iterations. Several methods of discretizingξ were also examined and all gave
similar results. To check the accuracy of the calculations, the step of the grid was decreased
until the required accuracy (10−4–10−5) for N(ξ) andθ(ξ) was achieved.

The boundary conditions for the initial distribution function asξ → −∞ should
correspond to the case of the amorphous state, i.e.N = L−3

c = constant andT =
T0 ≈ constant. In the opposite case we have an excited solid, andN is small, whereas
the temperature is higher:T = T0+Qcr/cρ. HereT0 is the equilibrium temperature of the
sample after the phase transition andQcr is the crystallization heat captured by structure-
forming defects:Qcr ≈ E ≈ U(N)N [10]. We used zero-flux boundary conditions forN
andT at ξ = ±∞.

4. Results and discussion

4.1. Stable points

By analysing equations (7) and (8) [24] it is possible to show that a phase transition wave
with constant velocityv corresponds to a process in which the system moves between the
stable solutions of equations (7) and (8) or (4) and (5), which are given by the solutions
of equations (7) and (8) with all d(· · ·)/dξ = 0. In agreement with the results of [10] we
find that for the experimental parameters corresponding to semiconductors like GaSb, CdSb
and ZnSb which undergo solid-state amorphization by high-pressure phase retention [10,
11], equations (7) and (8) may have one or three stationary solutions in the(y, T ) plane
depending on the interplay between the parameterss andδ described above. The particular
cases = 0.3 is illustrated by figure 2 for different choices of the parameterδ. If there are
three solutionsy1 < y2 < y3 then (y1, T1) and (y3, T3) will represent stable points, and
(y2, T2) will be unstable, and the case of a single solution is always stable [10]. Note that
according to the basic assumptions of the model the biggest rootymax should be associated
with the amorphous state having a coherence lengthLc = r0y−1/3

max ; see equation (1).
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Figure 2. Stationary points for equations (7) and (8) for the case ofs = 0.3 as a function
of δ. If there are three solutionsy1 < y2 < y3 for a particular choice ofδ then (y1, T1) and
(y3, T3) will represent stable points, and(y2, T2) will be unstable. If there is a single solution it
will be stable. The largest root is associated with the amorphous state with a coherence length
Lc = r0y−1/3

max .

Figure 3. Concentration (y = Nr3
0) and temperature (T/Ta) profiles for a self-sustaining wave

with constantv for different choices of the ratioDN/DT for the cases = 0.3 andδ = 0.5.

4.2. The phase transition wave

Here we will consider the case of a stable wave front with constantv for which the iteration
procedure converges. The case of dissipative structures observed in some cases will be
described elsewhere. In order to illustrate the basic stable behaviour we consider the case
s = 0.3 and δ = 0.5 (compare figure 2) for which there are three roots, two of them
stable. The system may then exhibit a dynamical transition ((y1, T1)→ (y3, T3), skipping
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the unstable root(y2, T2)). Typical results for the concentration and temperature profiles
are given in figure 3. As can be expected, the temperature front is much wider than the
concentration front, and scales with the diffusion broadening lengthL0 = DT /v, which
gives the characteristic size of the thermal gradient (figure 3). The change of theDN/DT

ratio alters the stationary asymptote forξ → ∞. This result supports the proposition that
SSA is essentially a dynamical process, and the amorphous state formed will depend on the
speed of the process and the diffusion coefficients.

Figure 4. Numerically calculated wave velocities for the case ofDN/DT = 0.001 (open
circles), 0.01 (stars), 0.1 (filled squares), 1 (filled circles), and 10 (triangles). The slopes of
the lines are found to be 0.5 ± 0.03. Insets: (a) the phase transformation wave (the case
shown hasDN/DT = 0.01) can only exist if its velocityv is less than some critical value
vc = v1D

0.5
T ; the allowed region is shown shaded; and (b) the parameterv1 fits well to the

relationv1 ∝ (DN/DT )−0.5.

4.3. The phase diagram

Our calculations have shown that the phase transition wave, as described above (see figure 3),
can exist only if its velocity is smaller than some critical valuevc(DN,DT ) (see inset (a) in
figure 4; the allowed region is shaded). For a fixed ratioDN/DT over a very large interval
of thermal diffusivity, 10−11 m2 s−1 < DT < 10−5 m2 s−1 the following scaling relation
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for a phase boundary holds:

vc = v1D
0.5
T (10)

(see the main diagram of figure 4 where the slope of the lines corresponds to the index
0.5±0.03). The change of the ratioDN/DT was found to alter the coefficientv1 in formula
(10): v1 decreases whenDN/DT decreases.

This type ofvc(DN,DT ) dependence may have a natural explanation if one assumes
that for the self-sustaining wave of the type considered above, the thermal gradient length
L0 should be bigger than the length scale associated with the concentration diffusivityLN ,
as one might expect for the temperature-driven process. Thus, we can write the condition
for the existence of the wave which defines the critical velocity:

LN = (DNτN)
0.5 < LT = DT /vc. (11)

Here τN is the relaxation time of the SFD. From equation (11) we immediately get
equation (10) withv1 = (DNτN/DT )

−0.5. Inset (b) in figure 4 indicates that this estimate
is consistent with the results of the computation.

5. Conclusions

A non-linear model of solid-state amorphization (SSA) taking into account the interaction
of the structural elements of the amorphous phase via a stress field has been described.
The proposed model represents SSA as a thermal diffusion-controlled process in which
the concentration of SFD ‘follows’ the temperature. However, it is impossible to neglect
the concentration diffusivity as, in accordance with the data displayed in figure 3, the
characteristics of the amorphous state formed should depend on theDN -parameter. Looking
at the scale in figure 4 we see that SSA may be very fast, and hence appear in an
experiment as a phase jump. The velocity of SSA remains high even in the localized
regime (DT ≈ 10−11 m2 s−1), being about 0.01 cm s−1. Further experiments should check
this theoretical prediction.
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